JESRT: 10(6), June, 2021

International Journal of Engineering Sciences & Research **Technology** (A Peer Reviewed Online Journal)

Impact Factor: 5.164

Chief Editor

Dr. J.B. Helonde

Executive **E**ditor

Mr. Somil Mayur Shah

ISSN: 2277-9655

Website: www.ijesrt.com Mail: editor@ijesrt.com

[Kulli et al., 10(6): June, 2021]

Impact Factor: 5.164 ICTM Value: 3.00 CODEN: IJESS7

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH **TECHNOLOGY**

DIFFERENT VERSIONS OF MULTIPLICATIVE ARITHMETIC-GEOMETRIC INDICES OF SOME CHEMICAL STRUCTURES

V. R. Kulli

Department of Mathematics, Gulbarga University, Kalaburgi (Gulbarga) 585 106, India

DOI: https://doi.org/10.29121/ijesrt.v10.i6.2021.5

ABSTRACT

In Chemical Graph Theory, several degree based topological indices were introduced and studied since 1972. In this paper, we compute the first, second, third, fourth and fifth multiplicative arithmetic-geometric indices of some important chemical drugs which appeared in medical science.

KEYWORDS: multiplicative arithmetic-geometric index, nanostructure.

Mathematics Subject Classification: 05C05, 05C07, 05C90.

1. INTRODUCTION

Let G be a finite, simple connected graph with a vertex set V(G) and an edge set E(G). The degree d(v) of a vertex v is the number of vertices adjacent to v. We refer to [1] for undefined term and notation.

A molecular graph is a simple graph related to the structure of a chemical compound. Each vertex of this graph represents an atom of the molecule and its edges to the bonds between atoms. A topological index is a numeric quantity from structural graph of a molecule. These indices are useful for establishing correlation between the structures of a molecular compound and its physicochemical properties.

Very recently Kulli [2] introduced the first multiplicative arithmetic-geometric index of a graph G and it is defined as

$$AG_{1}II(G) = \prod_{uv \in E(G)} \frac{d(u) + d(v)}{2\sqrt{d(u)d(v)}}.$$

Many other multiplicative indices were studied, for example, in [3, 4, 5, 6, 7, 8, 9, 10].

Motivated by the definition of the first multiplicative arithmetic-geometric index and by previous research on topological indices, Kulli proposed the second, third, fourth and fifth multiplicative arithmetic-geometric indices [11] of a graph as follows:

The second multiplicative arithmetic-geometric index of a graph G is defined as

$$AG_2II(G) = \prod_{uv \in E(G)} \frac{n(u) + n(v)}{2\sqrt{n(u)n(v)}}$$

where the number n(u) of vertices of G lying closer to the vertex u than to the vertex v for the edge uv of a graph

The third multiplicative arithmetic-geometric index of a graph G is defined as

$$AG_3II(G) = \prod_{uv \in E(G)} \frac{m(u) + m(v)}{2\sqrt{m(u)m(v)}}$$

htytp://www.ijesrt.com@ International Journal of Engineering Sciences & Research Technology

Where the number m(u) of edges of G lying closer to the vertex u than to the vertex v for the edge uv of a graph G.

The fourth multiplicative arithmetic-geometric index of a graph G is defined as

$$AG_4II(G) = \prod_{uv \in E(G)} \frac{\varepsilon(u) + \varepsilon(v)}{2\sqrt{\varepsilon(u)\varepsilon(v)}}$$

where the number $\varepsilon(u)$ is the eccentricity of vertex u.

The fifth multiplicative arithmetic-geometric index of a graph G is defined as

$$AG_5H(G) = \prod_{uv \in E(G)} \frac{s(u) + s(v)}{2\sqrt{s(u)s(v)}}$$

where s(u) denote the sum of the degrees of all vertices adjacent to a vertex u.

Recently, some new versions of topological indices were studied [12, 13, 14, 15, 16].

In this paper, the first, second, third, fourth and fifth multiplicative arithmetic-geometric Zagreb indices of some important molecular structures such as chloroquine, hydrochloroquine, remdesivir are computed. For chemical drugs, see [17, 18].

2. RESULTS AND DISCUSSION: CHLOROQUINE

Chloroquine is an antiviral compound (drug) which was discovered in 1934 by H.Andersag. This drug is medication primarily used to prevent and treat malaria.

Let G_1 be the chemical structure of chloroquine. This structure has 21 atoms and 23 bonds, see Figure 1.

Figure 1. Chemical structure of chloroquine

From Figure 1, we obtain that

- (i) $\{(d(u), d(v)) \mid uv \in E(G_1)\}\$ has 5 bond set partitions,
- (ii) $\{(n(u), n(v)) \mid uv \in E(G_1)\}\$ has 10 bond set partitions,
- (iii) $\{(m(u), m(v)) \mid uv \in E(G_1)\}\$ has 12 bond set partitions,
- (iv) $\{(\varepsilon(u), \varepsilon(v)) \mid uv \in E(G_1)\}\$ has 7 bond set partitions,
- (iv) $\{(s(u), s(v)) \mid uv \in E(G_1)\}\$ has 10 bond set partitions.

Figure 1. Chemical structure of chloroquine

$d(u), d(v) \setminus uv \in E(G_1)$	(1, 2)	(1,3)	(2, 2)	(2, 3)	(3, 3)	
Number of bonds	2	2	5	12	2	
$n(u), n(v) \setminus uv \in E(G_1)$	(1,19)	(1,20)	(2,18)	(3,17)	(4,16)	
Number of bonds	2	4	2	4	1	
	(5,15)	(6,14)	(7,13)	(9,11)	(10,10)	
	4	1	3	1	1	
$m(u), m(v) \setminus uv \in E(G_1)$	(1,21)	(1,22)	(2,19)	(3,18)	(4,17)	(5,15)
Number of bonds	2	4	2	4	1	3
	(5,16)	(6,15)	(7,14)	(8,13)	(9,13)	(10,12)

htytp://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology

[Kulli *et al.*, 10(6): June, 2021] ICTM Value: 3.00

Impact Factor: 5.164

ISSN: 2277-9655

ic value. 3.00				CODE	CODEN. IJESS/		
	1	1	2	1	1	1	
$\varepsilon(u)$, $\varepsilon(v) \setminus uv \in E(G_1)$	(7,7)	(8,7)	(8,9)	(9,10)	(10,11)		
Number of bonds	1	3	3	4	5		
	(11,12)	(12,13)					
	4	3					
$s(u), s(v) \setminus uv \in E(G_1)$							
Number of bonds	(2,4)	(3,5)	(4,5)	(4,6)	(5,5)		
	2	2	4	2	3		
	(5,6)	(5,7)	(5,8)	(6,7)	(7,8)		
	3	2	1	2	2		

In the following theorem, we compute the different versions of multiplicative arithmetic-geometric indices of chloroquine.

Theorem 1. Let G_1 be the chemical structure of chloroquine. Then

(i)
$$AG_1II(G_1) = \left(\frac{3}{2\sqrt{2}}\right)^2 \times \left(\frac{2}{\sqrt{3}}\right)^2 \times \left(\frac{5}{2\sqrt{6}}\right)^{12}$$
.

(ii)
$$AG_2H(G_1) = \left(\frac{10}{\sqrt{19}}\right)^2 \times \left(\frac{21}{4\sqrt{5}}\right)^4 \times \left(\frac{10}{\sqrt{51}}\right)^4 \times \left(\frac{2}{\sqrt{3}}\right)^4 \times \left(\frac{5}{\sqrt{21}}\right)^1 \times \left(\frac{10}{\sqrt{91}}\right)^3 \times \left(\frac{10}{3\sqrt{11}}\right)^1 \times \left(\frac{125}{36}\right)^1$$

(iii)
$$AG_3H(G_1) = \left(\frac{11}{\sqrt{21}}\right)^2 \times \left(\frac{23}{2\sqrt{22}}\right)^4 \times \left(\frac{21}{2\sqrt{38}}\right)^2 \times \left(\frac{7}{2\sqrt{6}}\right)^4 \times \left(\frac{21}{4\sqrt{17}}\right)^1 \times \left(\frac{2}{\sqrt{3}}\right)^3 \times \left(\frac{21}{8\sqrt{5}}\right)^1 \times \left(\frac{7}{2\sqrt{10}}\right)^1 \times \left(\frac{3}{2\sqrt{2}}\right)^2 \times \left(\frac{21}{4\sqrt{26}}\right)^1 \times \left(\frac{11}{3\sqrt{13}}\right)^1 \times \left(\frac{11}{2\sqrt{30}}\right)^1 \times \left(\frac{11}{2\sqrt{$$

(iv)
$$AG_4II(G_1) = \left(\frac{15}{4\sqrt{14}}\right)^3 \times \left(\frac{17}{12\sqrt{2}}\right)^3 \times \left(\frac{19}{6\sqrt{10}}\right)^4 \times \left(\frac{21}{2\sqrt{110}}\right)^5 \times \left(\frac{23}{4\sqrt{33}}\right)^4 \times \left(\frac{25}{4\sqrt{39}}\right)^3$$
.

(v)
$$AG_5II(G_1) = \left(\frac{3}{2\sqrt{2}}\right)^2 \times \left(\frac{4}{\sqrt{15}}\right)^2 \times \left(\frac{9}{4\sqrt{5}}\right)^4 \times \left(\frac{5}{2\sqrt{6}}\right)^2 \times \left(\frac{11}{2\sqrt{30}}\right)^3 \times \left(\frac{6}{\sqrt{35}}\right)^2 \times \left(\frac{13}{4\sqrt{10}}\right) \times \left(\frac{13}{2\sqrt{42}}\right)^2 \times \left(\frac{15}{4\sqrt{14}}\right)^2.$$

Proof: By using the definitions and cardinalities of the bond partitions of G_1 , we deduce

(i)
$$AG_{1}II(G_{1}) = \prod_{uv \in E(G_{1})} \frac{d(u) + d(v)}{2\sqrt{d(u)}d(v)}$$
$$= \left(\frac{1+2}{2\sqrt{1\times 2}}\right)^{2} \times \left(\frac{1+3}{2\sqrt{1\times 3}}\right)^{2} \times \left(\frac{2+2}{2\sqrt{2\times 2}}\right)^{5} \times \left(\frac{2+3}{2\sqrt{2\times 3}}\right)^{12} \times \left(\frac{3+3}{2\sqrt{3\times 3}}\right)^{2}$$

After simplification, we obtain the desired result.

(ii)
$$AG_2H(G_1) = \prod_{uv \in E(G_1)} \frac{n(u) + n(v)}{2\sqrt{n(u)n(v)}}$$

htytp://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

$$\begin{split} &= \left(\frac{1+19}{2\sqrt{1\times19}}\right)^2 \times \left(\frac{1+20}{2\sqrt{1\times20}}\right)^4 \times \left(\frac{2+18}{2\sqrt{2\times18}}\right)^2 \times \left(\frac{3+17}{2\sqrt{3\times17}}\right)^4 \times \left(\frac{4+16}{2\sqrt{4\times16}}\right)^1 \\ &\times 4 \left(\frac{5+15}{2\sqrt{5\times15}}\right)^4 \times \left(\frac{6+14}{2\sqrt{6\times14}}\right)^1 \times 3 \left(\frac{7+13}{2\sqrt{7\times13}}\right)^3 \times \left(\frac{9+11}{2\sqrt{9\times11}}\right)^1 \times \left(\frac{10+10}{2\sqrt{10\times10}}\right)^1. \end{split}$$

ISSN: 2277-9655

After simplification, we obtain the desired result

(iii)
$$AG_{3}II(G_{1}) = \prod_{uv \in E(G_{1})} \frac{m(u) + m(v)}{2\sqrt{m(u)m(v)}}$$

$$= \left(\frac{1+21}{2\sqrt{1\times21}}\right)^{2} \times \left(\frac{1+22}{2\sqrt{1\times22}}\right)^{4} \times \left(\frac{2+19}{2\sqrt{2\times19}}\right)^{2} \times \left(\frac{3+18}{2\sqrt{3\times18}}\right)^{4} \times \left(\frac{4+17}{2\sqrt{4\times17}}\right)^{1} \times \left(\frac{5+15}{2\sqrt{5\times15}}\right)^{3}$$

$$\times \left(\frac{5+16}{2\sqrt{5\times16}}\right)^{1} \times \left(\frac{6+15}{2\sqrt{6\times15}}\right)^{1} \times \left(\frac{7+14}{2\sqrt{7\times14}}\right)^{2} \times \left(\frac{8+13}{2\sqrt{8\times13}}\right)^{1} \times \left(\frac{9+13}{2\sqrt{9\times13}}\right)^{1} \times \left(\frac{10+12}{2\sqrt{10\times12}}\right)^{1}.$$

After simplification, we obtain the desired result.

(iv)
$$AG_4II(G_1) = \prod_{uv \in E(G_1)} \frac{\varepsilon(u) + \varepsilon(v)}{2\sqrt{\varepsilon(u)\varepsilon(v)}}$$
$$= \left(\frac{7+7}{2\sqrt{7\times7}}\right) \times \left(\frac{8+7}{2\sqrt{8\times7}}\right)^3 \times \left(\frac{8+9}{2\sqrt{8\times9}}\right)^3 \times \left(\frac{9+10}{2\sqrt{9\times10}}\right)^4 \times \left(\frac{10+11}{2\sqrt{10\times11}}\right)^5$$
$$\times \left(\frac{11+12}{2\sqrt{11\times12}}\right)^4 \times \left(\frac{12+13}{2\sqrt{12\times13}}\right)^3.$$

After simplification, we obtain the desired result

(v)
$$AG_{5}II(G_{1}) = \prod_{uv \in E(G_{1})} \frac{s(u) + s(v)}{2\sqrt{s(u)}s(v)}$$

$$= \left(\frac{2+4}{2\sqrt{2\times4}}\right)^{2} \times \left(\frac{3+5}{2\sqrt{3\times5}}\right)^{2} \times \left(\frac{4+5}{2\sqrt{4\times5}}\right)^{4} \times \left(\frac{4+6}{2\sqrt{4\times6}}\right)^{2} \times \left(\frac{5+5}{2\sqrt{5\times5}}\right)^{3}$$

$$\times \left(\frac{5+6}{2\sqrt{5\times6}}\right)^{3} \times \left(\frac{5+7}{2\sqrt{5\times7}}\right)^{2} \times \left(\frac{5+8}{2\sqrt{5\times8}}\right)^{1} \times \left(\frac{6+7}{2\sqrt{6\times7}}\right)^{2} \times \left(\frac{7+8}{2\sqrt{7\times8}}\right)^{2}$$

After simplification, we obtain the desired result.

3. RESULTS AND DISCUSSION: HYDROXYCHLOROQUINE

Hydroxychloroquine is another antiviral compound (drug) which has antiviral activity very similar to that of chloroquine. These compounds have been repurposed for the treatment of a number of other conditions including HIV, systemic lupus erythmatosus and rheumatoid arthritis.

Let G_2 be the chemical structure of hydroxychloroquine. This structure has 22 vertices and 24 edges, see Figure 2.

htytp://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[37]

[Kulli et al., 10(6): June, 2021]

ICTM Value: 3.00

HN NOH

Figure 2. Chemical structure of hydroxychloroquine

From Figure 2, we obtain that

- (i) $\{(d(u), d(v)) \mid uv \in E(G_2)\}\$ has 5 bond set partitions,
- (ii) $\{(n(u), n(v)) \mid uv \in E(G_2)\}\$ has 9 bond set partitions,
- (iii) $\{(m(u), m(v)) \mid uv \in E(G_2)\}\$ has 12 bond set partitions,
- (iv) $\{(\varepsilon(u), \varepsilon(v)) \mid uv \in E(G_2)\}\$ has 7 bond set partitions,
- (iv) $\{(s(u), s(v)) \mid uv \in E(G_2)\}\$ has 11 bond set partition

Table 2. Bond set partitions of hydroxychloroquine

Table 2. Bond set partitions of hydroxychloroquine									
(1, 2)	(1,3)	(2, 2)	(2, 3)	(3, 3)					
2	2	6	12	2					
(1,20)	(1,21)	(2,19)	(3,18)	(5,16)					
2	4	3	4	4					
(6,15)	(7,14)	(10,11)	(8,13)						
3	2	1	1						
(1,22)	(1,23)	(2,20)	(2,21)	(3,19)	(5,16)				
2	4	2	1	4	3				
(5,17)	(6,16)	(7,15)	(8,14)	(10,13)	(11,12)				
1	1	1	3	1	1				
(7,8)	(8,9)	(9,10)	(10,11)	(11,12)					
3	2	3	4	6					
(12,13)	(13,14)								
4	2								
(2,3)	(2,4)	(3,5)	(4,5)	(4,6)	(5,5)				
1	1	3	4	1	3				
(5,6)	(5,7)	(5,8)	(6,7)	(7,8)					
4	2	1	2	2					
	(1, 2) 2 (1,20) 2 (6,15) 3 (1,22) 2 (5,17) 1 (7,8) 3 (12,13) 4 (2,3) 1 (5,6)	(1, 2) (1,3) 2 2 (1,20) (1,21) 2 4 (6,15) (7,14) 3 2 (1,22) (1,23) 2 4 (5,17) (6,16) 1 1 (7,8) (8,9) 3 2 (12,13) (13,14) 4 2 (2,3) (2,4) 1 1 (5,6) (5,7)	(1, 2) (1,3) (2, 2) 2 2 6 (1,20) (1,21) (2,19) 2 4 3 (6,15) (7,14) (10,11) 3 2 1 (1,22) (1,23) (2,20) 2 4 2 (5,17) (6,16) (7,15) 1 1 1 (7,8) (8,9) (9,10) 3 2 3 (12,13) (13,14) 4 2 (2,3) (2,4) (3,5) 1 1 3 (5,6) (5,7) (5,8)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

In the following theorem, we compute the different versions of multiplicative arithmetic-geometric indices of hydroxychloroquine.

Theorem 2. Let G_2 be the chemical structure of hydroxychloroquine. Then

(i)
$$AG_1 II(G_2) = \left(\frac{3}{2\sqrt{2}}\right)^2 \times \left(\frac{2}{\sqrt{3}}\right)^2 \times \left(\frac{5}{2\sqrt{6}}\right)^{12}$$
.

(ii)
$$AG_2II(G_2) = \left(\frac{21}{2\sqrt{20}}\right)^2 \times \left(\frac{11}{\sqrt{21}}\right)^4 \times \left(\frac{21}{2\sqrt{38}}\right)^4 \times \left(\frac{21}{2\sqrt{54}}\right)^4 \times \left(\frac{21}{8\sqrt{5}}\right)^1 \times \left(\frac{21}{6\sqrt{10}}\right)^3 \times \left(\frac{3}{2\sqrt{2}}\right)^2 \times \left(\frac{21}{2\sqrt{110}}\right)^1 \times \left(\frac{21}{2\sqrt{104}}\right)^1.$$

htytp://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology
[38]

ISSN: 2277-9655

CODEN: IJESS7

Impact Factor: 5.164

ISSN: 2277-9655

(iii)
$$AG_3II(G_2) = \left(\frac{23}{2\sqrt{22}}\right)^2 \times \left(\frac{12}{\sqrt{23}}\right)^4 \times \left(\frac{11}{2\sqrt{10}}\right)^4 \times \left(\frac{23}{2\sqrt{42}}\right)^4 \times \left(\frac{11}{\sqrt{57}}\right)^1 \times \left(\frac{21}{8\sqrt{5}}\right)^3 + \left(\frac{11}{\sqrt{85}}\right)^1 \times \left(\frac{11}{4\sqrt{6}}\right)^1 \times \left(\frac{11}{2\sqrt{105}}\right)^1 \times \left(\frac{11}{4\sqrt{7}}\right)^3 \times \left(\frac{23}{2\sqrt{130}}\right)^1 \times \left(\frac{23}{2\sqrt{132}}\right)^1.$$
(iv) $AG_4II(G_2) = \left(\frac{15}{4\sqrt{14}}\right)^3 \times \left(\frac{17}{12\sqrt{2}}\right)^2 \times \left(\frac{19}{6\sqrt{10}}\right)^3 \times \left(\frac{21}{2\sqrt{110}}\right)^4 \times \left(\frac{23}{4\sqrt{33}}\right)^6 \times \left(\frac{25}{4\sqrt{39}}\right)^4 \times \left(\frac{27}{4\sqrt{182}}\right)^2.$
(v) $AG_5II(G_2) = \left(\frac{5}{2\sqrt{6}}\right)^1 \times \left(\frac{3}{2\sqrt{2}}\right)^1 \times \left(\frac{4}{\sqrt{15}}\right)^3 \times \left(\frac{9}{4\sqrt{5}}\right)^4 \times \left(\frac{5}{2\sqrt{6}}\right)^1 \times \left(\frac{11}{2\sqrt{30}}\right)^4 \times \left(\frac{6}{\sqrt{35}}\right)^2 \times \left(\frac{13}{4\sqrt{10}}\right)^1 \times \left(\frac{13}{2\sqrt{42}}\right)^2 \times \left(\frac{15}{4\sqrt{14}}\right)^2.$

Proof: By using the definitions and cardinalities of the bond partitions of G_2 , we deduce

(i)
$$AG_{1}II(G_{2}) = \prod_{uv \in E(G_{2})} \frac{d(u) + d(v)}{2\sqrt{d(u)}d(v)}$$
$$= \left(\frac{1+2}{2\sqrt{1\times 2}}\right)^{2} \times \left(\frac{1+3}{2\sqrt{1\times 3}}\right)^{2} \times \left(\frac{2+2}{2\sqrt{2\times 2}}\right)^{6} \times \left(\frac{2+3}{2\sqrt{2\times 3}}\right)^{12} \times \left(\frac{3+3}{2\sqrt{3\times 3}}\right)^{2}.$$

After simplification, we obtain the desired result

(ii)
$$AG_2 II(G_2) = \prod_{uv \in E(G_2)} \frac{n(u) + n(v)}{2\sqrt{n(u)n(v)}}$$

$$= 2\left(\frac{1+20}{2\sqrt{1\times20}}\right)^2 \times 4\left(\frac{1+21}{2\sqrt{1\times21}}\right)^4 \times 3\left(\frac{2+19}{2\sqrt{2\times19}}\right)^2 \times 4\left(\frac{3+18}{2\sqrt{3\times18}}\right)^4 \times 4\left(\frac{5+16}{2\sqrt{5\times16}}\right)^1$$

$$\times 3\left(\frac{6+15}{2\sqrt{6\times15}}\right)^4 \times 2\left(\frac{7+14}{2\sqrt{7\times14}}\right)^1 \times \left(\frac{10+11}{2\sqrt{10\times11}}\right)^3 \times \left(\frac{8+13}{2\sqrt{8\times13}}\right)^1.$$

After simplification, we obtain the desired result

(iii)
$$AG_{3}II(G_{2}) = \prod_{uv \in E(G_{2})} \frac{m(u) + m(v)}{2\sqrt{m(u)m(v)}}$$

$$= 2\left(\frac{1+22}{2\sqrt{1\times22}}\right)^{2} \times \left(\frac{1+23}{2\sqrt{1\times23}}\right)^{4} \times \left(\frac{2+20}{2\sqrt{2\times20}}\right)^{2} \times \left(\frac{2+21}{2\sqrt{2\times21}}\right)^{1} \times \left(\frac{3+19}{2\sqrt{3\times19}}\right)^{4}$$

$$\times \left(\frac{5+17}{2\sqrt{5\times17}}\right)^{1} \times \left(\frac{6+16}{2\sqrt{6\times16}}\right)^{1} \times \left(\frac{7+15}{2\sqrt{7\times15}}\right)^{3} \times \left(\frac{8+14}{2\sqrt{8\times14}}\right)^{3} \times \left(\frac{10+13}{2\sqrt{10\times13}}\right)^{1} \times \left(\frac{11+12}{2\sqrt{11\times12}}\right)^{1}.$$

After simplification, we obtain the desired result.

(iv)
$$AG_4 II(G_2) = \prod_{uv \in E(G_2)} \frac{\varepsilon(u) + \varepsilon(v)}{2\sqrt{\varepsilon(u)\varepsilon(v)}}$$

htytp://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology
[39]

$$\begin{split} & = \left(\frac{7+8}{2\sqrt{7\times8}}\right)^{\!3} \times \left(\frac{8+9}{2\sqrt{8\times9}}\right)^{\!2} \times \left(\frac{9+10}{2\sqrt{9\times10}}\right)^{\!3} \times \left(\frac{10+11}{2\sqrt{10\times11}}\right)^{\!4} \times \left(\frac{11+12}{2\sqrt{11\times12}}\right)^{\!6} \\ & \times \left(\frac{12+13}{2\sqrt{12\times13}}\right)^{\!4} \times \left(\frac{13+14}{2\sqrt{13\times14}}\right)^{\!2}. \end{split}$$

After simplification, we obtain the desired result.

(v)
$$AG_{5}II(G_{2}) = \prod_{uv \in E(G_{2})} \frac{s(u) + s(v)}{2\sqrt{s(u)}s(v)}$$

$$= \left(\frac{2+3}{2\sqrt{2\times3}}\right)^{1} \times \left(\frac{2+4}{2\sqrt{2\times4}}\right)^{1} \times \left(\frac{3+5}{2\sqrt{3\times5}}\right)^{3} \times \left(\frac{4+5}{2\sqrt{4\times5}}\right)^{4} \times \left(\frac{4+6}{2\sqrt{4\times6}}\right)^{1} \times \left(\frac{5+5}{2\sqrt{5\times5}}\right)^{3}$$

$$\times \left(\frac{5+6}{2\sqrt{5\times6}}\right)^{4} \times \left(\frac{5+7}{2\sqrt{5\times7}}\right)^{2} \times \left(\frac{5+8}{2\sqrt{5\times8}}\right)^{1} \times \left(\frac{6+7}{2\sqrt{6\times7}}\right)^{2} \times \left(\frac{7+8}{2\sqrt{7\times8}}\right)^{2}.$$

After simplification, we get the desired result.

4. RESULTS AND DISCUSSION: REMDESIVIR

Remdesivir is an antiviral drug which was developed by the biopharmaceutical company Gilead Sciences.Let G_3 be the molecular graph of remdesivir. This graph has 41 vertices and 44 edges.

Figure 3. Chemical structure of remdesivir

From Figure 3, we obtain that

- (i) $\{(d(u), d(v)) \mid uv \in E(G_3)\}\$ has 8 bond set partitions,
- (ii) $\{(n(u), n(v)) \mid uv \in E(G_3)\}\$ has 25 bond set partitions,
- (iii) $\{(m(u), m(v)) \setminus uv \in E(G_3)\}\$ has 23 bond set partitions,
- (iv) $\{(\varepsilon(u), \varepsilon(v)) \mid uv \in E(G_3)\}\$ has 11 bond set partitions,
- (iv) $\{(s(u), s(v)) \mid uv \in E(G_3)\}\$ has 23 bond set partitions.

Table 3. Bond set partitions of remdesivir

(1,2)	(1, 3)	(1, 4)	(2, 2)	(2, 3)	(2, 4)	(3, 3)	(3, 4)
2	5	2	9	14	4	6	2
(1,6)	(1,34)	(1,38)	(1,39)	(2,37)	(3,12)	(3,23)	(3,36)
1	1	2	9	8	1	1	2
(4,32)	(4,33)	(4,34)	(4,35)	(5,34)	(6,32)	(6,33)	(8,31)
1	1	1	1	2	1	2	1
(9,30)	(10,29)	(11,28)	(12,24)	(13,24)	(13,25)	(17,22)	(18,21)
1	1	1	1	1	1	1	1
(19,20)							
	2 (1,6) 1 (4,32) 1 (9,30) 1	2 5 (1,6) (1,34) 1 1 (4,32) (4,33) 1 1 (9,30) (10,29) 1 1	2 5 2 (1,6) (1,34) (1,38) 1 1 2 (4,32) (4,33) (4,34) 1 1 1 (9,30) (10,29) (11,28) 1 1 1	2 5 2 9 (1,6) (1,34) (1,38) (1,39) 1 1 2 9 (4,32) (4,33) (4,34) (4,35) 1 1 1 1 (9,30) (10,29) (11,28) (12,24) 1 1 1 1	2 5 2 9 14 (1,6) (1,34) (1,38) (1,39) (2,37) 1 1 2 9 8 (4,32) (4,33) (4,34) (4,35) (5,34) 1 1 1 1 2 (9,30) (10,29) (11,28) (12,24) (13,24) 1 1 1 1 1	2 5 2 9 14 4 (1,6) (1,34) (1,38) (1,39) (2,37) (3,12) 1 1 2 9 8 1 (4,32) (4,33) (4,34) (4,35) (5,34) (6,32) 1 1 1 1 2 1 (9,30) (10,29) (11,28) (12,24) (13,24) (13,25) 1 1 1 1 1 1	2 5 2 9 14 4 6 (1,6) (1,34) (1,38) (1,39) (2,37) (3,12) (3,23) 1 1 2 9 8 1 1 (4,32) (4,33) (4,34) (4,35) (5,34) (6,32) (6,33) 1 1 1 1 2 1 2 (9,30) (10,29) (11,28) (12,24) (13,24) (13,25) (17,22) 1 1 1 1 1 1 1 1

htytp://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology
[40]

[Kulli et al., 10(6): June, 2021]

Impact Factor: 5.164 ICTM Value: 3.00 CODEN: HESS7

ISSN: 2277-9655

1C ¹¹¹¹ value: 5.00							CODEN	(: IJE55/
	1							
$m(u),m(v)\setminus uv\in E(G_3)$	(1,42)	(1,43)	(2,8)	(2,32)	(2,40)	(2,41)	(3,39)	(4,15)
Number of bonds	2	9	1	1	2	6	2	1
	(4,39)	(4,26)	(5,37)	(5,38)	(6,35)	(6,37)	(7,36)	(8,35)
	1	1	2	1	1	2	1	2
	(10,33)	(11,32)	(15,27)	(16,26)	(16,27)	(20,23)	(21,22)	
	1	2	1	1	1	1	2	
$\varepsilon(u),\varepsilon(v)\setminus uv\in E(G_3)$	(9,10)	(10,11)	(11,12)	(12,13)	(13,13)	(13,14)	(14,15)	(15,16)
Number of bonds	2	4	4	7	1	7	5	4
	(16,16)	(16,17)	(17,18)					
	1	4	5					
$s(u),s(v)\setminus uv\in E(G_3)$	(2,4)	(3,6)	(3,7)	(3,8)	(4,4)	(4,5)	(4,6)	(4,7)
Number of bonds	2	3	1	1	2	4	2	1
	(4,9)	(5,5)	(5,6)	(5,7)	(5,8)	(5,9)	(6,6)	(6,7)
	1	2	6	1	2	1	1	3
	(6,8)	(7,7)	(7,8)	(7,9)	(8,8)	(8,9)	(9,9)	
	1	4	1	1	1	2	1	

In the following theorem, we compute the different versions of multiplicative arithmetic-geometric indices of remdesivir.

Theorem 3. Let G_3 be the chemical structure of remdesivir. Then

Theorem 3. Let 03 be the chemical satisfication of reinfocts with them

(i)
$$AG_1II(G_3) = \left(\frac{3}{2\sqrt{2}}\right)^2 \times \left(\frac{2}{\sqrt{3}}\right)^5 \times \left(\frac{5}{4}\right)^2 \cdot \times \left(\frac{5}{2\sqrt{6}}\right)^{14} \times \left(\frac{3}{2\sqrt{2}}\right)^4 \times \left(\frac{7}{4\sqrt{3}}\right)^2.$$

(ii) $AG_2II(G_3) = \left(\frac{7}{2\sqrt{6}}\right)^1 \times \left(\frac{35}{2\sqrt{34}}\right)^1 \times \left(\frac{39}{2\sqrt{38}}\right)^2 \times \left(\frac{20}{\sqrt{39}}\right)^9 \times \left(\frac{39}{2\sqrt{74}}\right)^8 \times \left(\frac{5}{4}\right)^1 \times \left(\frac{13}{\sqrt{69}}\right)^1 \times \left(\frac{13}{4\sqrt{33}}\right)^2 \times \left(\frac{9}{4\sqrt{2}}\right)^1 \times \left(\frac{37}{4\sqrt{33}}\right)^1 \times \left(\frac{19}{2\sqrt{34}}\right)^1 \times \left(\frac{39}{4\sqrt{35}}\right)^1 \times \left(\frac{39}{2\sqrt{170}}\right)^2 \times \left(\frac{19}{8\sqrt{3}}\right)^1 \times \left(\frac{37}{4\sqrt{78}}\right)^1 \times \left(\frac{39}{5\sqrt{13}}\right)^1 \times \left(\frac{39}{2\sqrt{374}}\right)^1 \times \left(\frac{39}{2\sqrt{290}}\right)^1 \times \left(\frac{39}{4\sqrt{95}}\right)^1.$

(iii) $AG_3II(G_3) = \left(\frac{43}{2\sqrt{42}}\right)^2 \times \left(\frac{22}{\sqrt{43}}\right)^9 \times \left(\frac{5}{4}\right)^1 \times \left(\frac{17}{8}\right)^1 \times \left(\frac{21}{4\sqrt{5}}\right)^2 \times \left(\frac{43}{2\sqrt{82}}\right)^6 + \left(\frac{7}{\sqrt{13}}\right)^2 \times \left(\frac{43}{2\sqrt{222}}\right)^2 \times \left(\frac{43}{4\sqrt{39}}\right)^1 \times \left(\frac{43}{4\sqrt{70}}\right)^2 \times \left(\frac{43}{2\sqrt{330}}\right)^1 \times \left(\frac{43}{8\sqrt{22}}\right)^2 + \left(\frac{7}{\sqrt{45}}\right)^1 \times \left(\frac{21}{4\sqrt{26}}\right)^1 \times \left(\frac{43}{4\sqrt{115}}\right)^1 \times \left(\frac{43}{4\sqrt{115}}\right)^1 \times \left(\frac{43}{2\sqrt{483}}\right)^2.$

(iv) $AG_4II(G_3) = \left(\frac{19}{6\sqrt{10}}\right)^2 \times \left(\frac{21}{2\sqrt{110}}\right)^4 \times \left(\frac{23}{4\sqrt{33}}\right)^4 \times \left(\frac{25}{4\sqrt{39}}\right)^7 \times \left(\frac{27}{2\sqrt{182}}\right)^7$

htytp://www.ijesrt.com© International Journal of Engineering Sciences & Research Technology

$$\times \left(\frac{29}{2\sqrt{210}}\right)^{5} \times \left(\frac{31}{8\sqrt{15}}\right)^{4} \times \left(\frac{33}{8\sqrt{17}}\right)^{4} \times \left(\frac{35}{6\sqrt{34}}\right)^{5}.$$

$$(v) \ AG_{5}II(G_{3}) = \left(\frac{3}{2\sqrt{2}}\right)^{2} \times \left(\frac{3}{2\sqrt{2}}\right)^{3} \times \left(\frac{5}{\sqrt{21}}\right)^{1} \times \left(\frac{11}{4\sqrt{6}}\right)^{1} \times \left(\frac{9}{4\sqrt{5}}\right)^{4} \times \left(\frac{5}{2\sqrt{6}}\right)^{2}$$

$$\times \left(\frac{11}{4\sqrt{7}}\right)^{1} \times \left(\frac{13}{12}\right)^{1} \times \left(\frac{11}{2\sqrt{30}}\right)^{6} \times \left(\frac{12}{2\sqrt{35}}\right)^{1} \times \left(\frac{13}{4\sqrt{10}}\right)^{2} \times \left(\frac{7}{3\sqrt{5}}\right)^{1}$$

$$\times \left(\frac{13}{2\sqrt{42}}\right)^{3} \times \left(\frac{7}{4\sqrt{3}}\right)^{1} \times \left(\frac{15}{4\sqrt{14}}\right)^{1} \times \left(\frac{8}{3\sqrt{7}}\right)^{1} \times \left(\frac{17}{12\sqrt{2}}\right)^{2}.$$

Proof: By using the definitions and cardinalities of the bond partitions of G_3 , we deduce

(i)
$$AG_{1}II(G_{3}) = \prod_{uv \in E(G_{3})} \frac{d(u) + d(v)}{2\sqrt{d(u)d(v)}}$$

$$= \left(\frac{1+2}{2\sqrt{1\times2}}\right)^{2} \times \left(\frac{1+3}{2\sqrt{1\times3}}\right)^{5} \times \left(\frac{1+4}{2\sqrt{1\times4}}\right)^{2} \times \left(\frac{2+2}{2\sqrt{2\times2}}\right)^{9} \times \left(\frac{2+3}{2\sqrt{2\times3}}\right)^{14}$$

$$\times \left(\frac{2+4}{2\sqrt{2\times4}}\right)^{4} \times \left(\frac{3+3}{2\sqrt{3\times3}}\right)^{6} \times \left(\frac{3+4}{2\sqrt{3\times4}}\right)^{2}.$$

After simplification, we get the desired result.

(ii)
$$AG_{2}II(G_{3}) = \prod_{uv \in E(G_{3})} \frac{n(u) + n(v)}{2\sqrt{n(u)n(v)}}$$

$$= \left(\frac{1+6}{2\sqrt{1\times6}}\right)^{1} \times \left(\frac{1+34}{2\sqrt{1\times34}}\right)^{1} \times \left(\frac{1+38}{2\sqrt{1\times38}}\right)^{2} \times \left(\frac{1+39}{2\sqrt{1\times39}}\right)^{9} \times \left(\frac{2+37}{2\sqrt{2\times37}}\right)^{8}$$

$$\times \left(\frac{3+12}{2\sqrt{3\times12}}\right)^{1} \times \left(\frac{3+23}{2\sqrt{3\times23}}\right)^{1} \times \left(\frac{3+36}{2\sqrt{3\times36}}\right)^{2} \times \left(\frac{4+32}{2\sqrt{4\times32}}\right)^{1} \times \left(\frac{4+33}{2\sqrt{4\times33}}\right)^{1}$$

$$\times \left(\frac{4+34}{2\sqrt{4\times34}}\right)^{1} \times \left(\frac{4+35}{2\sqrt{4\times35}}\right)^{1} \times \left(\frac{5+34}{2\sqrt{5\times34}}\right)^{2} \times \left(\frac{6+32}{2\sqrt{6\times32}}\right)^{1} \times \left(\frac{6+33}{2\sqrt{6\times33}}\right)^{2}$$

$$\times \left(\frac{8+31}{2\sqrt{8\times31}}\right)^{1} \times \left(\frac{9+30}{2\sqrt{9\times30}}\right)^{1} \times \left(\frac{10+29}{2\sqrt{10\times29}}\right)^{1} \times \left(\frac{11+28}{2\sqrt{11\times28}}\right)^{1} \times \left(\frac{12+24}{2\sqrt{12\times24}}\right)^{1}$$

$$\times \left(\frac{13+24}{2\sqrt{13\times24}}\right)^{1} \times \left(\frac{13+25}{2\sqrt{13\times25}}\right)^{1} \times \left(\frac{17+22}{2\sqrt{17\times22}}\right)^{1} \times \left(\frac{18+21}{2\sqrt{18\times21}}\right)^{1} \times \left(\frac{19+20}{2\sqrt{19\times20}}\right)^{1}.$$

After simplification, we get the desired result

(iii)
$$AG_{3}H(G_{3}) = \prod_{uv \in E(G_{3})} \frac{m(u) + m(v)}{2\sqrt{m(u)m(v)}}$$

$$= \left(\frac{1+42}{2\sqrt{1\times42}}\right)^{2} \times \left(\frac{1+43}{2\sqrt{1\times43}}\right)^{9} \times \left(\frac{2+8}{2\sqrt{2\times8}}\right)^{1} \times \left(\frac{2+32}{2\sqrt{2\times32}}\right)^{1} \times \left(\frac{2+40}{2\sqrt{2\times40}}\right)^{2}$$

$$\times \left(\frac{2+41}{2\sqrt{2\times41}}\right)^{6} \times \left(\frac{3+39}{2\sqrt{3\times39}}\right)^{2} \times \left(\frac{4+15}{2\sqrt{4\times15}}\right)^{1} \times \left(\frac{4+39}{2\sqrt{4\times39}}\right)^{1} \times \left(\frac{4+26}{2\sqrt{4\times26}}\right)^{1}$$

htytp://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology

 $\times \left(\frac{5+37}{2\sqrt{5\times37}}\right)^{2} \times \left(\frac{5+38}{2\sqrt{5\times38}}\right)^{1} \times \left(\frac{6+35}{2\sqrt{6\times35}}\right)^{1} \times \left(\frac{6+37}{2\sqrt{6\times37}}\right)^{2} \times \left(\frac{7+36}{2\sqrt{7\times36}}\right)^{1}$ $\times \left(\frac{8+35}{2\sqrt{8\times35}}\right)^{2} \times \left(\frac{10+33}{2\sqrt{10\times33}}\right)^{1} \times \left(\frac{11+32}{2\sqrt{11\times32}}\right)^{2} \times \left(\frac{15+27}{2\sqrt{15\times27}}\right)^{1} \times \left(\frac{16+26}{2\sqrt{16\times26}}\right)^{1}$ $\times \left(\frac{16+27}{2\sqrt{16\times27}}\right)^{1} \times \left(\frac{20+23}{2\sqrt{20\times23}}\right)^{1} \times \left(\frac{21+22}{2\sqrt{21\times22}}\right)^{2}.$

After simplification, we get the desired result

(iv)
$$AG_4 II(G_3) = \prod_{uv \in E(G_3)} \frac{\varepsilon(u) + \varepsilon(v)}{2\sqrt{\varepsilon(u)\varepsilon(v)}}$$

$$= \left(\frac{9+10}{2\sqrt{9\times10}}\right)^2 + \left(\frac{10+11}{2\sqrt{10\times11}}\right)^4 + \left(\frac{11+12}{2\sqrt{11\times12}}\right)^4 + \left(\frac{12+13}{2\sqrt{12\times13}}\right)^7 + \left(\frac{13+13}{2\sqrt{13\times13}}\right)^1$$

$$+ \left(\frac{13+14}{2\sqrt{13\times14}}\right)^7 + \left(\frac{14+15}{2\sqrt{14\times15}}\right)^5 + \left(\frac{15+16}{2\sqrt{15\times16}}\right)^4 + \left(\frac{16+16}{2\sqrt{16\times16}}\right)^1 + \left(\frac{16+17}{2\sqrt{16\times17}}\right)^4$$

$$+ \left(\frac{17+18}{2\sqrt{17\times18}}\right)^5.$$

After simplification, we get the desired result.

(v)
$$AG_{5}H(G_{3}) = \prod_{uv \in E(G_{3})} \frac{s(u) + s(v)}{2\sqrt{s(u)s(v)}}$$

$$= \left(\frac{2+4}{2\sqrt{2\times4}}\right)^{2} + \left(\frac{3+6}{2\sqrt{3\times6}}\right)^{3} + \left(\frac{3+7}{2\sqrt{3\times7}}\right)^{1} + \left(\frac{3+8}{2\sqrt{3\times8}}\right)^{1} + \left(\frac{4+4}{2\sqrt{4\times4}}\right)^{2}$$

$$+ \left(\frac{4+5}{2\sqrt{4\times5}}\right)^{4} + \left(\frac{4+6}{2\sqrt{4\times6}}\right)^{2} + \left(\frac{4+7}{2\sqrt{4\times7}}\right)^{1} + \left(\frac{4+9}{2\sqrt{4\times9}}\right)^{1} + \left(\frac{5+5}{2\sqrt{5\times5}}\right)^{2}$$

$$+ \left(\frac{5+6}{2\sqrt{5\times6}}\right)^{6} + \left(\frac{5+7}{2\sqrt{5\times7}}\right)^{1} + \left(\frac{5+8}{2\sqrt{5\times8}}\right)^{2} + \left(\frac{5+9}{2\sqrt{5\times9}}\right)^{1} + \left(\frac{6+6}{2\sqrt{6\times6}}\right)^{1}$$

$$+ \left(\frac{6+7}{2\sqrt{6\times7}}\right)^{3} + \left(\frac{6+8}{2\sqrt{6\times8}}\right)^{1} + \left(\frac{7+7}{2\sqrt{7\times7}}\right)^{4} + \left(\frac{7+8}{2\sqrt{7\times8}}\right)^{1} + \left(\frac{7+9}{2\sqrt{7\times9}}\right)^{1}$$

$$+ \left(\frac{8+8}{2\sqrt{8\times8}}\right)^{1} + \left(\frac{8+9}{2\sqrt{8\times9}}\right)^{2} + \left(\frac{9+9}{2\sqrt{9\times9}}\right)^{1}.$$

After simplification, we get the desired result.

5. CONCLUSION

In this paper, we have computed the first, second, third, fourth and fifth multiplicative arithmetic-geometric indices of some important chemical drugs which appeared in medical science.

REFERENCES

- [1] V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
- [2] V.R.Kulli, A new multiplicative arithmetic-geometric index, *Journal of Fuzzy Mathematical Archive*, 12(2) (2017) 49-53.

htytp://www.ijesrt.com@International Journal of Engineering Sciences & Research Technology
[43]

RESEARCHER ID

[Kulli *et al.*, 10(6): June, 2021] ICTM Value: 3.00

June, 2021]

ISSN: 2277-9655
Impact Factor: 5.164
CODEN: IJESS7

- [3] W.Gao, Y. Wang and W. Wang, and Li Shi, The first multiplication atom bond connectivity index of molecular structures in drugs, *Saudi Pharmaceutical Journal*, (2017), http://dx.doi.org/10.1016/j.jsps.2017.04.021.
- [4] V.R.Kulli, Multiplicative connectivity KV indices of dendrimers, *Journal of Mathematics and Informatics*, 15(2019) 1-7.
- [5] V.R.Kulli, Multiplicative Gourava indices of armchair and zigzag polyhax nanotube, *Journal of Mathematics and Informatics*, 17(2019) 107-112
- [6] V.R.Kulli, Computation of Multiplicative (a, b)-status index of certain graphs, *Journal of Mathematics and Informatics*, 18(2020) 50-55.
- [7] V.R.Kulli, Computation of multiplicative Banhatti-Sombor indices of certain benzenoid systems, *International Journal of Mathematical Archive*, 12(4) (2021) 24-30.
- [8] V.R.Kulli, On multiplicative inverse Nirmala indices, *Annals of Pure and Applied Mathematics*, 23(2) (2021) 57-61.
- [9] V.R.Kulli, Computation of Multiplicative minus *F*-indices of titania nanotubes, *Journal of Mathematics and Informatics*, 18(2020) 135-140.
- [10] V.R.Kulli, Multiplicative Sombor indices of certain nanotubes, *International Journal of Mathematical Archive*, 12(3) (2021) 1-5.
- [11] V.R.Kulli, New multiplicative arithmetic-geometric indices, *Journal of Ultra Scientist of Physical Sciences*, A, 29(6) (2017) 205-211.
- [12] M.Ghorbaniand M.A.Hosseinzadeh, A new version of Zagreb indices, Filomat 26(1) (2012) 93-100.
- [13] A.Graovac and M.Ghorbani, A new version of atom bond connectivity index, *Acta Cimica Slovenica*, 57(2) (2010) 609-612.
- [14] V.R.Kulli, Two new multiplicative atom bond connectivity indices, *Annals of Pure and Applied Mathematics*, 13(1) (2017) 1-7.
- [15] V.R.Kulli, Some new multiplicative geometric-arithmetic indices, *Journal of Ultra Scientist of Physical Sciences*, A, 29(2) (2017) 52-57.
- [16] V.R.Kulli, New arithmetic-geometric indices, *Annals of Pure and Applied Mathematics*, 13(2) (2017) 165-172.
- [17] B.Chaluvaraju and A.B.Shaikh, Different versions of atom bond connectivity indices of some molecular structures: Applied for the treatment and prevention of COVID-19, *Polycyclic Aromatic Compounds*, DOI: 10.1080/10406638.2021.1872655.
- [18] V.R.Kulli, Revan indices of chloroquine, hydroxychloroquine, remdesivir: Research Advances for the treatment of COVOD-19, *International Journal of Engineering Sciences and research technology*, 9(5) (2020) 73-84.

